

Convection Enhanced Pirani Family PGE050, PGE300, PGE500

MEASUREMENT RANGE

Atmospheric Pressure (ATM) = 760 Torr (at sea level) 1 Torr = 1000 mTorr 10⁻³ Torr = 1 mTorr = 1 micron

SPECIFICATIONS		PGE050, PGE300 & PGE500		
Measurement range		1.3 x 10 ⁻⁴ 1333 mbar 1 x 10 ⁻⁴ 1000 Torr 1.3 x 10 ⁻² Pa 133 kPa		
Accuracy (N ₂) ¹⁾	1.3 x 10 ⁻³ 1.3 x 10 ⁻³ mbar 1.3 x 10 ⁻³ 530 mbar 530 1333 mbar	0.1 x 10 ⁻³ mbar resolution ±10 % of reading ±2.5 % of reading		
	1 x 10 ⁻⁴ 1 x 10-3 Torr 1 x 10 ⁻³ 400 Torr 400 1000 Torr	0.1 mTorr resolution ±10 % of reading ±2.5 % of reading		
Repeatability (N ₂) 1)		<u>+</u> 2% of reading		
Electrical connection	PGE300	D-Sub, 9-pin, male		
	PGE500	D-sub, 9-pin, male and D-sub, 15-pin HD, male (with RS232 / RS485)		
Supply voltage		+12 +28 ²⁾		
Materials exposed to vacuum		gold-plated tungsten, 304 & 316 stainless steel, glass, nickel, Teflon®		
Internal volume Internal surface area		26 (1.589) cm³ (in³) 59.7 (9.25) cm³ (in³)		
Admissible temperature	Operation Bakeout 3)	0 +50 °C ≤150 °C		
	PGE300 Operation Bakeout Storage	0 +40 °C ≤70 °C -40 +70 °C		
	PGE500 Operation Bakeout (electr. removed) Storage	0 +40 °C ≤150 °C -40 +70 °C		
Setpoint relay	PGE300	1 (single-pole double-throw relay (SPDT) 1A at 30V(dc) resistive, or V(ac) non-inductive		
	PGE500	2 (single-pole double-throw relays(SPDT) 1A at 30V(dc) resistive, or V(ac) non-inductive		

Typically
We protected against power reversal and transient over-voltages
non-operating, with electronics cable detached

DIMENSIONS

PGESUU		PGE300		PGE030	
105 (4.12) 7,500 A1	35 (1.35)	104.7 (4.12)	48.3 (1.9) 15.0 10.0	90.4 (3.56)	36 (1.42)

www.inficon.com reachus@inficon.com

Due to our continuing program of product improvements, specifications are subject to change without notice.

tibb13e1 ©2017 INFICON

Convection Enhanced Pirani Gauges

Accurate from atmosphere to mid vacuum

Accurate from atmosphere to mid vacuum

The INFICON Enhanced Pirani family of vacuum gauges uses the most advanced convection enhanced Pirani sensor available on the market.

The convection enhanced Pirani technology

- extended measurement range from 1.3 x 10⁻⁴ to 1333 mbar (1 x 10⁻⁴ to 1000 Torr)
- higher accuracy (up to +/-2.5%) than conventional thermal conductivity Pirani technology

INFICON convection enhanced Pirani gauges series PGE is available in two

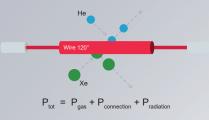
ADVANTAGES AT A GLANCE

- Convection enhanced Pirani technology for extended measurement range and accuracy
- Active gauge versions with built-in controller with display, mechanical set points, RS232/RS485 digital interface and choice of analog output signals
- Passive gauge version PGE050 sensor + external VGC031 controller with display, mechanical set points, RS232/RS485 digital interface and choice of analog output signals

APPLICATIONS

- Fore vacuum pressure monitoring
- General vacuum measurement and control from atmosphere to medium vacuum range
- RAC and Automotive

active and one passive gauge set up to serve the customer with the best suited gauge-feature package for his technical needs and budget.

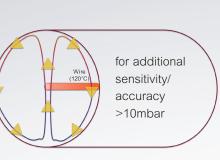

The PGE series provides a bright and easy to read OLED display, one or two set points, different analog output signals and a digital RS232/RS485 interface if required.

All gauges in the PGE series, PGE050, PGE300 and PGE500, carry the same superior convection enhanced Pirani sensor technology inside and are easy to set up and suited to work carefree in a wide range of semiconductor and industrial applications.

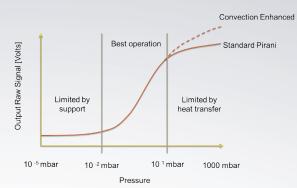
TINFICON

GENERAL PIRANI PRINCIPLE

The temperature will be conducted through the gas molecules. The temperature loss of the hot filament is a function of the pressure.



CONVECTION ENHANCED PIRANI PRINCIPLE


The convection enhanced Pirani allows convection current circulation within the measurement tube. The wire heats the surrounding gas causing it to rise to the top of the tube where it is cooled and returned to the bottom, simultaneoulsy the cooler gas is drawn from the bottom, resulting in the convection circulation process. This physics results in additional sensitivity/accuracy above 10 mbar.

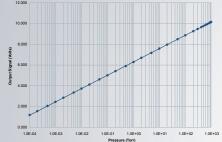
INTERFACE PGE300

Nine pin D-Sub male analog output

PIRANI GAUGES CURVES

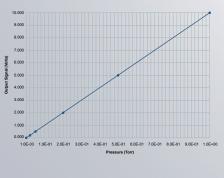
INFICON PGE050 / PGE300 / PGE500

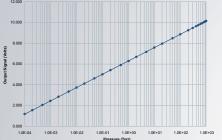
Temperature compensation coils outside of the vacuum enclosure for:

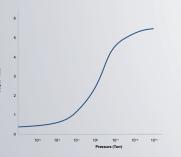

- Less outgassing (due to reduced internal volume and surface area)
- Faster response time to pressure changes

Sensor wire / filament (gold plated tungsten or platinum) Robust and simplified design – increased durability with extended warranty

PASSIVE GAUGE / CONTROLLER SET UP


ANALOG OUTPUT SIGNALS


Output 0.6 to 10.23 V log-linear



Output S-Curve non-linear

Output 0 to 10 V linear

- Bright OLED display
- Designed for easy operation and natural progression of set up parameters
- during programming

