


# DeviceNet Interface for the Penning Gauge





#### **General Note**

The right of alterations in the design and the technical data is reserved. The illustrations are not binding.

#### Contents

|                                          | Page                                                                                        |  |  |  |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <b>1</b><br>1.1<br>1.2<br>1.3            | Penning Gauge PEG100-D3DeviceNet interface3Pin description3Technical data3                  |  |  |  |  |  |  |
| <b>2</b><br>2.1<br>2.1.1<br>2.1.2<br>2.2 | Starting-up of the PEG100-D4Baudrate and Address Switch4Baudrate4Address Setting4MNS - LED4 |  |  |  |  |  |  |
| <b>3</b><br>3.1<br>3.2                   | <b>Object Structure</b>                                                                     |  |  |  |  |  |  |
| 3.3<br>3.3.1<br>3.3.2<br>3.4             | Assembly Objects (Class Code 04 <sub>hex</sub> ) 6<br>Output Assemblies                     |  |  |  |  |  |  |
| 3.5                                      | (Class Code $67_{hex}$ )                                                                    |  |  |  |  |  |  |
| 3.6                                      | Analog Output Point Object<br>(Class Code 6A <sub>hex</sub> )8                              |  |  |  |  |  |  |
| <b>4</b><br>4.1<br>4.2                   | Supported Modes8Supplement to Bit Strobe8Supplement to Change of State8                     |  |  |  |  |  |  |
| 5                                        | Format of real values9                                                                      |  |  |  |  |  |  |
| 6                                        | Service at INFICON10                                                                        |  |  |  |  |  |  |
| 7                                        | <b>Disposal</b> 10                                                                          |  |  |  |  |  |  |
| EEC D                                    | EEC Declaration of Conformity11                                                             |  |  |  |  |  |  |
| Declaration of Contamination             |                                                                                             |  |  |  |  |  |  |



# 1 Penning Gauge PEG100-D

The PEG100-D are equipped with a fieldbus interface DeviceNet. Thus, process automatization devices can easily be interconnected.

### 1.1 DeviceNet – Interface

The fieldbus-system DeviceNet is described in the DeviceNet specification of the Open DeviceNet Vendor Association (ODVA). The technical and functional features of the DeviceNet Standards are specified herein.

The PEG100-D have the functionality of DeviceNet Group 2 Only Slaves.

### 1.2 Pin Description of DeviceNet plug


Pin description:

| Pin Number | Function                 |
|------------|--------------------------|
| а          | Ground supply            |
| b          | CAN -                    |
| С          | Shield                   |
| d          | CAN -<br>Shield<br>Can + |
| е          | +24 Volt supply          |
|            |                          |

### 1.3 Technical data

Device Type Generic Baud Rates 125 k, 250 k, 500 k Baud

| 8 8                                                                                                                                               | trobe, Polling,<br>f State, Cyclic               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Isolated Physical Layer<br>Input voltage range for DeviceNet option                                                                               | 11 - 25 Volt                                     |
| Voltage levels CAN Lines:<br><b>Transmitter Requirements</b><br>Differential Output level (nominal)<br>Differential Output level (minimum)        | 2.0 V p-p<br>1.5 V p-p                           |
| connector, 50 Ohms load<br>Minimum Recessive Bus voltage<br>CAN H and CAN L                                                                       | 2.0 V <sup>1</sup> )                             |
| Maximum Recessive Bus voltage<br>CAN H and CAN L                                                                                                  | 3.0 V 1)                                         |
|                                                                                                                                                   | ernally limited                                  |
| Differential Input Voltage dominant<br>Differential Input Voltage Recessive<br>Hysteresis                                                         | 0.95 V min<br>0.45 V max<br>150 mV typ.          |
| <ol> <li>Voltages at CAN H and CAN L are referenced to<br/>IC ground pin. This voltage (IC ground pin) is app<br/>than the V-terminal.</li> </ol> |                                                  |
| Address adjustment Selectable via add                                                                                                             | ress switches                                    |
| auto-baud-rate detect                                                                                                                             | oaudrates and<br>ion selectable<br>ress switches |
| Status signals 1 bicolor combined Moo<br>Statu                                                                                                    | lule / <b>N</b> etwork<br>is LED (MNS)           |
| Operating ambient temperature                                                                                                                     | 0 to 50 °C                                       |
| Storage temperature - 20                                                                                                                          | °C to + 80 °C                                    |





# 2 Starting-up of the PEG100-D

For starting-up the fieldbus

- the whole system has to be installed electronically.
- the master has to be configurated
- the address of the slaves has to be set

### 2.1 Baudrate and Address Switch

#### 2.1.1 Baudrate

Alternatively you can choose between two kinds of baudrate installations:

- Auto - Baud - Rate - Detection

If the unit is switched on during data transfer on the network (minimum: 2 nodes installed with data traffic between these nodes) the unit detects automatically the installed baudrate on the bus.

- Pre-installed baudrate

You can install three baudrates (125 kBaud, 250 kBaud and 500 kBaud) by using the address switches (see figure 1).

The function of the address switches (Figure 1) is as follows:

| Address | Function                                     |
|---------|----------------------------------------------|
| 0 - 64  | MAC ID                                       |
|         | (Address selection by address switches)      |
| 90      | Baudrate 125 kBaud                           |
| 91      | Baudrate 250 kBaud                           |
| 92      | Baudrate 500 kBaud                           |
| 99      | Initialisation with default values and auto- |
|         | baudrate detection                           |
|         |                                              |

#### How to install a fixed baudrate:

- Switch off the power of the DeviceNet option.
- Set the address switches to the address 90, 91 or 92 (depending on the baudrate you want)
- Switch on the power of the DeviceNet option. The MNS - LED will glow orange.
- Switch off the power of the DeviceNet option.
- Set the address switches to the MAC ID you want the device to work with
- Switch on the power of the DeviceNet option.
- The MNS -LED will flash green if a communication between the PTR and an other device takes place.

After power ON the unit must find a device to communicate with (duplicate MAC ID check) (for example a master or a monitor) otherwise the MNS LED will not flash green and it will be impossible to allocate the PEG. The installed baudrate is saved in EEPROM. After power ON/OFF the unit works with this installed baudrate.

#### How to install the auto baudrate detection:

If a fixed baudrate is installed and you want to change this fixed baudrate to auto baudrate detection, you have to proceed as follows:

- Switch off the power of the DeviceNet option.
- Set the address switches to the address 99 (initialisation of all values with default values).
- Switch on the power of the DeviceNet option. The MNS - LED will glow orange.
- Switch off the power of the DeviceNet option.
- Set the address switches to the MAC ID you want the device to work with.
- Switch on the power of the DeviceNet option.
- The MNS LED will flash green if a communication between the PTR and an other device takes place.

The installed auto baudrate detection is saved in EEPROM. After power ON/OFF the unit works with this installed auto baudrate detection.

After power ON the unit must find a device to communicate with (duplicate MAC ID check) (for example a master or a monitor) otherwise the MNS LED will not flash green and it will be impossible to allocate the PTR.

#### 2.1.2 Address Setting

It is necessarry in a network to give each device a specific address. Therefore the address switches have to be set to the requested MAC ID (addresses between 0 and 64 are possible).

### 2.2 MNS - LED

The MNS - LED corresponds to the ODVA standard. The following additional features were integrated:

| LED Colour:      | Function                                                                                                                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| ORANGE permanent | The address switches are set to<br>one of the possible baudrate<br>settings (90, 91, 92) or to "Initia-<br>lisation with default values"<br>(99). |
| RED permanent    | Not allowed MAC ID                                                                                                                                |



# **3 Object Structure**

### 3.1 Identity Object (Class Code 01<sub>hex</sub>)

Class Code: 1 (01<sub>hex</sub>) Class Attributes: None

#### **Instance Attributes**

| Attribut ID            | Access Rule | Name           | Description                                 |
|------------------------|-------------|----------------|---------------------------------------------|
| 1 (01 <sub>hex</sub> ) | get         | INFICON        | Vendor Identification<br>Vendor ID: 144dez. |
| 2 (02 <sub>hex</sub> ) | get         | Generic Device | Device Type                                 |
| 3 (03 <sub>hex</sub> ) | get         | Product Code   | Vendor Productcode                          |
| 4 (04 <sub>hex</sub> ) | get         | Revision       | DeviceNet Software Version-Number           |
| 5 (05 <sub>hex</sub> ) | get         | Status         | Device Status                               |
| 6 (06 <sub>hex</sub> ) | get         | Serial Number  |                                             |
| 7 (07 <sub>hex</sub> ) | get         | Product Name   | PEG100-D                                    |

#### Services

| Service Code            | Name                 |
|-------------------------|----------------------|
| 5 (05 <sub>hex</sub> )  | Reset                |
| 14 (0E <sub>hex</sub> ) | Get Attribute Single |
| 16 (10 <sub>hex</sub> ) | Set Attribute Single |

### 3.2 Device Manager(DM) Object (Class Code 64<sub>hex</sub>)

Class Code: 100 (64<sub>hex</sub>) Class Attributes: None

#### **Instance Attributes**

| Attribut ID             | Access Rule | Name                              | Data/Type                          | Description                                       |
|-------------------------|-------------|-----------------------------------|------------------------------------|---------------------------------------------------|
| 49 (31 <sub>hex</sub> ) | get         | Device Type                       | String [3]<br>43 49 47             | Device Typ SEMI "CIG" ;<br>Cold cathode ion gauge |
| 50 (32 <sub>hex</sub> ) | get         | Standard Revision<br>Level        | String [5]<br>44 52 41 46 54       | "DRAFT"                                           |
| 51 (33 <sub>hex</sub> ) | get         | Device Manufacturer<br>Identifier | String [7]<br>4c 45 59 42 4f 4c 44 | Vendor Identifikation "INFICON"                   |
| 52 (34 <sub>hex</sub> ) | get         | Manufacturer Model<br>Number      | String [5]                         | Catalog Number                                    |
| 53 (35 <sub>hex</sub> ) | get         | Firmware Revision<br>Level        | String [5]<br>31 2e 30 30 30       | Software Version                                  |
| 54 (36 <sub>hex</sub> ) | get         | Hardware Revision<br>Level        | String [5]<br>30 2e 30 30 30       | Hardware Version                                  |



| Attribut ID             | Access Rule | Name                 | Data/Type  | Description                                                                    |  |  |  |
|-------------------------|-------------|----------------------|------------|--------------------------------------------------------------------------------|--|--|--|
| 55 (37 <sub>hex</sub> ) | get         | Serial Number        | String [5] |                                                                                |  |  |  |
| 56 (38 <sub>hex</sub> ) | get         | Device Configuration | String [8] | PEG100-D                                                                       |  |  |  |
| 57 (38 <sub>hex</sub> ) | get         | Device Status        | UNIT       | Device status<br>1 = Initialising<br>2 = Idle (HV on)<br>4 = Executing (HV on) |  |  |  |
| 58 (3A <sub>hex</sub> ) | get / set   | Reporting Mode       | BYTE       | Polling, Bit Strobe = 6<br>COS / Cyclic = 0                                    |  |  |  |
| 60 (3C <sub>hex</sub> ) | get         | Exception Status     | BYTE       | $0_{hex} = ok$<br>$1_{hex} = HV on, no plasma$<br>$2_{hex} = HV off$           |  |  |  |
| Services                |             |                      |            |                                                                                |  |  |  |
| Service Code            | e   Name    | Description          |            |                                                                                |  |  |  |

| 14 (0E <sub>hex</sub> ) | Get Attribute Single |  |
|-------------------------|----------------------|--|
|-------------------------|----------------------|--|

### 3.3 Assembly Objects (Class Code 04<sub>hex</sub>)

A collection of assembly objects allows the sending of attributes from different application objects in one message (i.e.: Polling I/O).

#### 3.3.1 Output Assemblies

Messages which a master sends to the PEG100-D.

#### **Output Assembly 1**

| Byte | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1          | Bit 0                     |
|------|-------|-------|-------|-------|-------|-------|----------------|---------------------------|
| 0    | res   | res   | res   | res   | res   | res   | HV<br>ON / OFF | HV<br>ON / OFF<br>Control |

#### 3.3.2 Input Assemblies

Messages which the PEG100-D sends to the master.

#### Input Assembly 2

| Byte | Bit 7                      | Bit 6                             | Bit 5 | Bit 4 | Bit 3 | Bit 2                    | Bit 1     | Bit 0           |  |
|------|----------------------------|-----------------------------------|-------|-------|-------|--------------------------|-----------|-----------------|--|
| 0    | res                        | res                               | res   | res   | res   | HV<br>ON / OFF<br>Source | HV Status | Sensor<br>Satus |  |
| 1    |                            | Exception Status                  |       |       |       |                          |           |                 |  |
| 2    |                            | Pressure value (Low Byte)         |       |       |       |                          |           |                 |  |
| 3    |                            | Pressure value (Low Middle Byte)  |       |       |       |                          |           |                 |  |
| 4    |                            | Pressure value (High Middle Byte) |       |       |       |                          |           |                 |  |
| 5    | Pressure value (High Byte) |                                   |       |       |       |                          |           |                 |  |



#### **Input Assembly 3**

| Byte | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3    | Bit 2                    | Bit 1     | Bit 0           |
|------|-------|-------|-------|-------|----------|--------------------------|-----------|-----------------|
| 0    | res   | res   | res   | res   | res      | HV<br>ON / OFF<br>Source | HV Status | Sensor<br>Satus |
| 1    |       |       |       | Exce  | eption S | tatus                    |           |                 |

# 3.4 Sensor Pressure Object (Class Code 67<sub>hex</sub>)

The Sensor Pressure Object contains characteristics and behavior of the PEG. This object is specified as a SAC-Object. All defined services for SAC-Objects are valid.

Class Code: 103 (67<sub>hex</sub>)

Class Attributes: None

#### **Instance Attributes**

| Attribut ID              | Access Rule | Name                | Data Type | Description                                                    |
|--------------------------|-------------|---------------------|-----------|----------------------------------------------------------------|
| 3 (03 <sub>hex</sub> )   | get         | Sensor Status       | BOOL      | Sensor Status (Gauge ON = 1 / Gauge OFF)                       |
| 100 (64 <sub>hex</sub> ) | get / set   | HV ON / OFF         | BIT       | 1 = HV ON<br>2 = HV OFF                                        |
| 101 (65 <sub>hex</sub> ) | get / set   | HV ON/OFF<br>Source | BYTE      | 0 = Control by analog input signal<br>1 = Control by DeviceNet |
| 102 (66 <sub>hex</sub> ) | get / set   | HV State            | Byte      | 0 = OFF<br>1 = ON                                              |

#### Services

| Service Code                                       | Name                                         | Description |
|----------------------------------------------------|----------------------------------------------|-------------|
| 14 (0E <sub>hex</sub> )<br>16 (10 <sub>hex</sub> ) | Get Attribute Single<br>Set Attribute Single |             |

### 3.5 Transform Pressure Object (Class Code 68<sub>hex</sub>)

Class Code: 104 (68<sub>hex</sub>)

Class Attributes: None

#### Instance Attributes

| Attribut ID            | Access Rule | Name           | Data Type | Description                                |
|------------------------|-------------|----------------|-----------|--------------------------------------------|
| 1 (01 <sub>hex</sub> ) | get         | Pressure Value | REAL      | Pressure value                             |
| 3 (03 <sub>hex</sub> ) | get / set   | Pressure Units | BYTE      | 0 = mbar default<br>1 = Torr<br>2 = Pascal |

#### Services

Service Code | Name

14 (0E<br/>hex)Get Attribute Single16 (10<br/>hex)Set Attribute Single



### 3.6 Analog Output Point Object (Class Code 6Ahex)

Class Code: 106 (6A<sub>hex</sub>) Class Attributes: None

#### **Instance Attributes**

| Attribut ID              | Access Rule | Name                  | Data Type | Description |
|--------------------------|-------------|-----------------------|-----------|-------------|
| 101 (65 <sub>hex</sub> ) | get         | Analog Output<br>Mode | BYTE      | 0 =log      |

#### Services

| Service Code                                       | Name                                         | Description |
|----------------------------------------------------|----------------------------------------------|-------------|
| 14 (0E <sub>hex</sub> )<br>16 (10 <sub>hex</sub> ) | Get Attribute Single<br>Set Attribute Single |             |

# **4 Supported Modes**

The PEG100-D acts as a "DeviceNet Group Two Only Slave". It supports the modes Polling, Bit-Strobe, Change of State/ Cyclic and explicit messagges. Please set the "Interscan Delay" of your master to app. 20ms if your system is as fast that is polls the PEG100-D at regular intervals shorter than 20ms.

### 4.1 Bit Strobe

The HV may be switched on and off by the Bit-Strobe application. Bit-Strobe Bit = 1  $\rightarrow$  HV on, and response with Input Assembly 1 Bit-Strobe Bit = 0  $\rightarrow$  HV off

### 4.2 Change of State

Connection Object Instance Attribute (Class 5 / Instance 4/ Attribut 100)

| Attribut ID              | Access Rule | Name               | Data Type | Description |
|--------------------------|-------------|--------------------|-----------|-------------|
| 100 (64 <sub>hex</sub> ) | get / set   | Pressure<br>Change | BYTE      | see below   |

#### Pressure Change

The attribute describes the deviation in percent of the measurement value which will result in a COS message on the bus.

Possible values for "Pressure Change": 1 - 100 %.



# 5 Format of real values

According to the IEEE-754 standard real values are stored in floating point format. The floating point values are transmitted according to the following format:

| Byte    | 2         | 3         | 4         | 5         |
|---------|-----------|-----------|-----------|-----------|
| Content | SEEE EEEE | EMMM MMMM | MMMM MMMM | MMMM MMMM |

**S means:** Sign Bit, which means 1 = negative, 0 = positive

E means: Two-complement exponents with offset 127

**M means:** 23 bit mantissa. The most significant bit is always 1 and is, therefore, not stored.

#### Example:

The value -12.5

| Byte number of the floating point value | Byte 3:   | Byte 2:   | Byte 1:   | Byte 0:   |
|-----------------------------------------|-----------|-----------|-----------|-----------|
|                                         | C1 hex    | 48 hex    | 00 hex    | 00 hex    |
| Content                                 | SEEE EEEE | EMMM MMMM | MMMM MMMM | MMMM MMMM |
| Content in this example                 | 1100 0001 | 0100 1000 | 0000 0000 | 0000 0000 |
|                                         | binary    | binary    | binary    | binary    |

#### Sign bit:

The bit S in this example is 1. That means the sign bit of the whole value (or of the mantissa) is "minus".

#### Exponent:

The EEEE have the value: 1000 0010 binary. This value converted in decimal it is: 130 decimal. This value has the offset 127. So the exponent is: 130 - 127 = 3

#### Mantissa:

Because the mantissa is normalized the most significant bit has the value 1, the next bit has the value 0.5, the next bit has the value 0.25.

| Bit number   | Value of the bit, if the bit is set to 1 |
|--------------|------------------------------------------|
| bit 24 (MSB) | 1                                        |
| bit 23       | 0.5                                      |
| bit 22       | 0.25                                     |
| bit 21       | 0.125                                    |
| bit 20       | 0.0625                                   |
| bit 19       | 0.03125                                  |
| bit 18       | 0.015625                                 |
| bit 17       | 0.0078125                                |
| and so on    |                                          |

and so on

The MMM MMMM MMMM MMMM MMMM (23bit) have the value 100 1000 0000 0000 0000 0000. The most significant bit (MSB) is always 1 (and not stored). You have to implement this most significant bit.

So the value of the mantisse is: 1100 1000 0000 0000 0000 (binary).

|               | Value         |
|---------------|---------------|
| $\rightarrow$ | 1             |
| $\rightarrow$ | + 0.5         |
| $\rightarrow$ | + 0.0625      |
|               | $\rightarrow$ |

So the mantissa has the value 1.5625

#### Whole Value:

The whole value is:  $-1.5625 \cdot 2^3 = -12.5$ 



# 6 Service at INFICON

#### Warning



Contaminated products (e.g. radioactive, toxic, caustic or microbiological hazard) can be detrimental to health and environment.

Products returned to INFICON should preferably be free of harmful substances. Adhere to the forwarding regulations of all involved countries and forwarding companies and enclose a duly completed declaration of contamination (see Annex).

Products that are not clearly declared as "free of harmful substances" are decontaminated at the expense of the customer.

Products not accompanied by a duly completed declaration of contamination are returned to the sender at his own expense.

# 7 Disposal

#### Warning



Contaminated parts can be detrimental to health and environment.

Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handlinmg contaminated parts.

Contaminated parts

#### Warning

Substance detrimental to the environment



Products or parts thereof (mechanical and electric components, operating fluids etc.) can be detrimental to the environment.

Dispose of such substance in accordance with the relevant local regulations.

#### Separating the components

After disassembling the product, separate its components according to the following criteria:

Contaminated components

Contaminated components (radioactive, toxic, caustic or biological hazard etc.) must be decontaminated in accordance with the relevant national regulations, separated according to their materials, and disposed of.

#### Other components

Such components must be separated according to their materials and recycled.



### **EEC Declaration of Conformity**

as defined by the Directive relating to machinery 98/37/EG, Appendix IIb.

We -INFICON - herewith declare that the products defined below meet the basic requirements regarding safety and health of the relevant EEC directives by design, type and the versions which are brought in to circulation by us.

We also declare that the equipment mentioned below complies with the provisions of the Directive relating to electrical equipment designed for use within certain voltage limits 73/23/ EEC and the Directive relating to electromagnetic compatibility 89/336/EEC.

#### Product:

DeviceNet Interface PEG100-D

#### Part Number

351-003

351-004

#### Standards

Harmonized and international / national standards and specifications:

- EN 61010 1 3.1994
- EN 50081 1 1992
- EN 50082 2 1995

Balzers, 14 July 2001

Hannes Fischer, Product Manager

Balzers, 14 July 2001

Dr. Georg Sele, Technical Support Manager; Quality Representative



# **Declaration of Contamination**

The service, repair, and/or disposal of vacuum equipment and components will only be carried out if a correctly completed declaration has been submitted. Non-completion will result in delay.

This declaration may only be completed (in block letters) and signed by authorized and qualified staff.

|        | Description of product Type Article Number                                                     | Reason for               | return                                                                  |                                                                                                                                    |
|--------|------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|        | Serial Number                                                                                  |                          |                                                                         | <b>—</b>                                                                                                                           |
|        |                                                                                                | Operating fl             | uid(s) used (Must                                                       | be drained before shipping.)                                                                                                       |
|        |                                                                                                |                          |                                                                         |                                                                                                                                    |
|        |                                                                                                |                          |                                                                         |                                                                                                                                    |
|        |                                                                                                | <b>4</b> Process rel     | ated contaminatio                                                       | on of product:                                                                                                                     |
|        |                                                                                                | toxic                    | no 🖵 1                                                                  | ) yes 🛛                                                                                                                            |
|        |                                                                                                | caustic                  | no 🖵 1                                                                  | i) yes 🗖 📃 🦳                                                                                                                       |
|        |                                                                                                | biological haz           | ard no 🖵                                                                | yes 🖵 2)                                                                                                                           |
|        |                                                                                                | explosive                | no 🗖                                                                    | yes 🗆 2)                                                                                                                           |
|        |                                                                                                | radioactive              | no 🗖                                                                    | yes 🗆 2) 🔹                                                                                                                         |
|        | The product is free of any sub-                                                                | other harmful            | substances no 🗖 1                                                       | I) yes                                                                                                                             |
|        | stances which are damaging to<br>health yes                                                    | of hazard                | ntaining any amount<br>lous residues that<br>ne permissible ex-<br>nits | <ol> <li>Products thus contam<br/>nated will not be ac-<br/>cepted without written<br/>evidence of decontam<br/>nation!</li> </ol> |
|        | 6                                                                                              |                          |                                                                         |                                                                                                                                    |
|        | Harmful substances, ga                                                                         | ses and/or by-product    | s                                                                       |                                                                                                                                    |
|        | Please list all substances, g                                                                  | ases, and by-products wh | ich the product may I                                                   | have come into contact with:                                                                                                       |
|        |                                                                                                | ical name<br>mbol)       | Precautions associa<br>with substance                                   | Action if human contact                                                                                                            |
|        |                                                                                                |                          |                                                                         |                                                                                                                                    |
|        |                                                                                                |                          |                                                                         |                                                                                                                                    |
|        |                                                                                                |                          |                                                                         |                                                                                                                                    |
|        |                                                                                                |                          |                                                                         |                                                                                                                                    |
|        |                                                                                                |                          |                                                                         |                                                                                                                                    |
| ۲<br>/ | · · · · · · · · · · · · · · · · · · ·                                                          | 7                        | · · · · · · · · · · · · · · · · · · ·                                   |                                                                                                                                    |
|        | Legally binding declaration:                                                                   |                          |                                                                         |                                                                                                                                    |
|        | I/we hereby declare that the information on that arise. The contaminated product will be dispa |                          |                                                                         |                                                                                                                                    |
|        |                                                                                                |                          | ne applicable regula                                                    |                                                                                                                                    |
|        | Organization/company                                                                           |                          |                                                                         |                                                                                                                                    |
|        | Address                                                                                        |                          |                                                                         |                                                                                                                                    |
|        | Phone                                                                                          |                          | x                                                                       |                                                                                                                                    |
|        | Email                                                                                          |                          |                                                                         |                                                                                                                                    |
|        | Name                                                                                           |                          |                                                                         |                                                                                                                                    |
|        |                                                                                                |                          |                                                                         |                                                                                                                                    |
|        | Date and legally binding signature                                                             | Co                       | ompany stamp                                                            |                                                                                                                                    |

This form can be downloaded from our website.

Copies:

Original for addressee - 1 copy for accompanying documents - 1 copy for file of sender







#### INFICON LIMITED:

FL-9496 Balzers, Principality of Liechtenstein Phone: +423 388 3111 Fax: +423 388 3700 www.inficon.com

UNITED STATES FRANCE GERMANY LIECHTENSTEIN UNITED KINGDOM CHINA JAPAN KOREA SINGAPORE TAIWAN

Due to INFICON's continuing program of product improvements, specifications are subject to change without notice. Visit our website for contact information and other sales offices worldwide. www.inficon.com